In the hustle and bustle of our daily lives, nighttime often becomes a sanctuary where we seek solace and rest. However, it is precisely during these hours that unexpected malfunctions can occur, disrupting our peace and demanding immediate attention. Roller replacement can improve the functionality of an older garage door garage door opener repair near me quality of service. In such moments, the importance of quick temporary solutions cannot be overstated. These solutions serve as immediate stopgaps that prevent minor inconveniences from escalating into more significant issues.
Consider, for instance, a common scenario where your home heating system fails on a chilly winter night. While the ultimate solution might involve professional repair or replacement of parts, waiting until morning for such services could leave you shivering through the night. A quick temporary fix-such as using portable heaters or layering up with extra blankets-ensures comfort and safety until permanent repairs can be made. These provisional measures are crucial in maintaining a semblance of normalcy amidst unexpected disruptions.
The significance of keeping temporary solutions handy extends beyond mere convenience; it embodies a proactive approach to problem-solving that emphasizes preparedness. By anticipating potential issues and equipping ourselves with simple tools or strategies to address them swiftly, we mitigate the stress and frustration often associated with late-night emergencies.
Moreover, these immediate solutions empower individuals by fostering resilience and adaptability. The ability to think on one's feet and implement quick fixes cultivates confidence in handling unforeseen circumstances effectively. It encourages resourcefulness-a skill that proves invaluable not only in dealing with nighttime malfunctions but in navigating life's broader challenges.
However, it is essential to recognize that while temporary solutions are vital for immediate relief, they should not replace long-term resolutions. Relying solely on these makeshift measures may lead to recurring problems or even exacerbate existing ones over time. Therefore, they should be viewed as interim steps within a larger framework of comprehensive problem-solving strategies.
In conclusion, the importance of quick temporary solutions for nighttime malfunctions lies in their capacity to provide immediate relief while ensuring continuity and comfort in our daily lives. By preparing for potential disruptions with pragmatic stopgaps at hand, we safeguard our well-being and enhance our ability to manage crises efficiently. As we embrace this mindset of readiness and adaptability, we pave the way for smoother transitions from temporary fixes to enduring resolutions-a balance essential for maintaining harmony amidst life's unpredictable rhythms.
In the stillness of the night, when most of the world is wrapped in slumber, unexpected malfunctions can disturb the tranquility of our homes. Be it a flickering light bulb, a leaky faucet, or an unforeseen power outage, nighttime malfunctions demand immediate attention to restore peace and functionality. Keeping essential tools and materials on hand is not just practical; it's a proactive measure that saves time and alleviates stress.
First and foremost, a reliable flashlight is indispensable. Malfunctions often involve electrical issues or occur during power outages, plunging your home into darkness. A high-quality LED flashlight ensures you can navigate safely and address problems effectively. Consider keeping one by your bed for easy access.
A basic toolkit should be part of every household's arsenal. This includes screwdrivers (both flathead and Phillips), pliers, an adjustable wrench, and a hammer. These fundamental tools empower you to tackle common issues like loose screws or minor plumbing mishaps without delay. For those who are more adept at DIY repairs, adding items like a voltage tester or wire strippers can further prepare you for electrical glitches.
Duct tape is another versatile solution that deserves its place among essential materials. Known for its durability and strength, duct tape can temporarily fix everything from torn window screens to leaking pipes until proper repairs are possible.
Having spare batteries on hand is crucial as well. They are necessary not only for flashlights but also for smoke detectors and other battery-operated devices that might malfunction at night.
For plumbing issues such as clogged sinks or toilets, a plunger is your first line of defense. Its straightforward design allows quick intervention before minor inconveniences escalate into major water damage.
Consider assembling an emergency kit with these tools alongside other essentials like candles, matches or lighters-ideal during prolonged power outages-and even spare fuses if your home's electrical system requires them.
Lastly, knowledge complements preparation. Familiarize yourself with basic repair techniques through online tutorials or manuals specific to appliances in your home. Understanding how to reset circuit breakers or patch up small leaks can make nighttime malfunctions less daunting.
In conclusion, while no one anticipates encountering problems in the dead of night, being prepared with essential tools and materials transforms potential crises into manageable tasks. This readiness not only maintains the sanctity of sleep but also enhances self-reliance within your household-a truly invaluable asset in any situation life may unexpectedly present.
When it comes to same-day garage door repair services, one might wonder what to expect from such a prompt service.. To illuminate this, let's turn to customer testimonials and success stories that vividly illustrate the experiences of those who have benefited from these rapid response services. Imagine a scenario where you're getting ready for work, only to discover that your garage door refuses to budge.
Posted by on 2025-01-02
In today's fast-paced, technologically-driven world, the integration of mobile applications into everyday devices has become a hallmark of innovation and convenience.. One such area experiencing significant transformation is garage door technology.
Posted by on 2025-01-02
In the midst of a storm, when the winds howl and rain lashes against your home, the security of your garage door becomes paramount.. It is often an overlooked aspect of home maintenance until it fails to perform when most needed.
Posted by on 2025-01-02
In today's fast-paced world, convenience and efficiency are paramount, and technology continues to evolve to meet these demands.. One area where modern technology has made significant strides is in the realm of home automation, specifically in the operation of garage doors.
Posted by on 2025-01-02
When the sun sets and casts shadows over our neighborhood, there is a unique sense of tranquility that comes with nighttime. However, this tranquility can quickly turn into frustration if you find yourself dealing with a stuck garage door. Whether it's due to a power failure or a mechanical glitch, encountering such an issue at night can be inconvenient and worrisome. Therefore, having some simple techniques for manually operating a stuck garage door can be incredibly handy.
First and foremost, it's essential to ensure your safety before attempting any manual operation on your garage door. Make sure the area is well-lit so you can see what you're doing clearly. If necessary, use a flashlight or portable lamp to illuminate your workspace. Once you're ready, the first step in tackling a stuck garage door is to disconnect it from the automatic opener system. Most garage doors have an emergency release cord usually red hanging down from the garage door trolley. By pulling this cord downwards, you disengage the door from the motorized trolley, allowing you to operate it manually.
With the opener disconnected, stand back and assess how heavy your garage door feels when trying to lift it manually. It's crucial not to strain yourself or risk injury; if the door feels too heavy or if you encounter resistance beyond what feels safe, stop immediately and consider seeking professional help.
However, if the weight seems manageable, continue by slowly lifting the door along its tracks until it's fully open. It's helpful to have another person assist you; teamwork will make this process easier and safer as one person can lift while the other stabilizes.
Once opened fully, secure the garage door in place using clamps or locking pliers on each track just below one of the rollers. This precaution prevents accidental slippage that could cause injury or damage overnight.
If closing is necessary later on without resolving underlying issues permanently (like fixing broken springs), carefully reverse these steps: remove clamps/pliers securely holding up lifted sections before gently lowering them back into closed positions - again ensuring no fingers/hands are caught between panels/tracks during descent!
While these methods provide temporary solutions for nighttime malfunctions only under specific circumstances where mechanical failures aren't severe enough warrant immediate service calls remember they aren't substitutes long-term repairs maintenance routines professionals offer! Regularly inspecting lubricating moving parts helps prevent future occurrences altogether; proactive care ensures peace mind knowing everything functions smoothly day night alike!
In the quiet hours of night, when the world is asleep and only a few dedicated souls remain vigilant, the reliability of our technological systems becomes a silent guardian. Yet, even the most advanced sensors are not infallible; they can malfunction or become misaligned at any time, particularly during nighttime operations when immediate assistance might be limited. Thus, having temporary solutions ready for these nighttime sensor malfunctions can mean the difference between seamless operation and significant disruption.
First and foremost, it is crucial to understand that while temporary fixes do not replace permanent solutions, they serve as essential stopgaps allowing operations to continue until more comprehensive repairs can be made. For instance, in an industrial setting where sensors monitor critical processes, a malfunction could halt production entirely. In such cases, having a set of predefined protocols and tools to address common sensor issues quickly can prevent costly downtime.
One practical approach is maintaining an inventory of spare parts and basic repair kits specifically tailored to address frequent sensor issues. This kit might include items like duct tape for physical stabilization, compressed air cans for cleaning dust or debris from sensitive components, or even replacement batteries if power supply is suspect. These simple tools can often rectify minor misalignments or connectivity issues that might cause a sensor to behave erratically.
Moreover, fostering technical know-how among night shift personnel is equally important. Providing training sessions on how to identify and troubleshoot basic sensor problems empowers employees to take swift action in times of need. Simple skills such as recalibrating sensors manually or using diagnostic software can go a long way in mitigating potential disruptions.
In environments where sensors play a critical role in safety-such as in healthcare facilities or security systems-having temporary workarounds prepared becomes even more vital. Consider backup manual methods or redundant systems that can temporarily take over should a primary sensor fail. For example, manual temperature checks could substitute for malfunctioning climate control sensors in hospitals until professional repair services are available.
Communication also plays a pivotal role in managing these situations effectively. Establishing clear lines of communication between team members ensures that everyone is aware of current system statuses and any ongoing temporary measures being employed. This collective awareness helps maintain safety and operational continuity while permanent solutions are sought during regular business hours.
Ultimately, keeping temporary solutions handy for nighttime sensor malfunctions involves preparation and foresight. It requires understanding both the limitations of technology and the capacity of human ingenuity to adapt under pressure. By equipping teams with the right tools and knowledge-and fostering an environment where quick thinking underpins all activities-we ensure that operations remain robust against unforeseen challenges thrown up by the dead of night.
In conclusion, while we cannot anticipate every problem before it occurs, we can certainly prepare ourselves to face them head-on with confidence when they do arise. Temporary fixes may not be perfect but they are indispensable allies in our quest for uninterrupted functionality amidst the calm chaos of nighttime endeavors.
In the quiet of a moonlit night, when the world is still and your home is wrapped in darkness, an unexpected power outage can be more than just a minor inconvenience. It can disrupt the smooth functioning of various household systems we often take for granted, such as garage doors. These modern conveniences, powered by electricity for seamless operation, can become stubborn barriers when the lights go out. This is why it's crucial to have temporary solutions readily available to address nighttime malfunctions.
Garage doors are vital components of our homes that provide security and easy access. However, during a power outage, they may leave you feeling trapped or vulnerable if not handled correctly. Many homeowners may not realize that their garage door systems come equipped with manual overrides designed precisely for these situations. Typically, this involves pulling a red cord hanging from the motor mechanism that disengages the door from its electric track system. Familiarizing yourself with this process during daylight hours will make it easier to manage in an emergency.
Beyond manual operation, investing in battery backup systems is another wise consideration. These systems ensure your garage door opener continues to function even when the main power supply fails. Battery backups are designed to automatically kick in during a power outage, providing peace of mind and maintaining security without interruption.
Additionally, portable generators can serve as another backup option for powering essential appliances during outages, including garage doors. While generators require an initial investment and proper handling knowledge, they offer flexibility by providing auxiliary power across multiple devices in your home.
For those seeking more sustainable solutions, solar-powered garage door openers are becoming increasingly popular. These eco-friendly alternatives harness energy from the sun to operate independently of your home's electrical grid. They offer reliability during outages while also reducing your carbon footprint.
It's important to remember that preparation extends beyond having equipment on hand; understanding how each backup system works is equally critical. Reviewing user manuals and conducting regular maintenance checks ensures all components function reliably when needed most.
While technology offers numerous ways to keep life moving smoothly through disruptions like power outages, simple steps like keeping flashlights or lanterns accessible can also make navigating such scenarios less daunting at night.
Ultimately, addressing potential issues before they arise empowers homeowners with confidence and control over their environment despite unforeseen circumstances. By incorporating these practical measures into our daily lives, we transform temporary setbacks into manageable events - ensuring safety and convenience no matter what challenges arise after dark.
In our fast-paced world, where the unexpected seems to be the norm rather than the exception, being prepared for nighttime malfunctions becomes an essential life skill. The tranquility of night often serves as a backdrop for unforeseen disruptions, from flickering lights to leaking pipes. While temporary repairs can provide immediate relief and ensure continuity until professional help arrives, it is imperative to approach these fixes with safety at the forefront.
When implementing temporary repairs during nighttime malfunctions, safety precautions are paramount. The dimness that accompanies night can obscure hazards and increase the risk of accidents. Therefore, having a reliable source of light is crucial. Whether it's a flashlight or a headlamp, adequate lighting not only allows you to see what you're doing but also helps avoid potential dangers such as tripping over tools or materials left on the floor.
Equally important is ensuring that you have easy access to basic repair tools and materials. An organized toolkit containing essentials like duct tape, screwdrivers, pliers, and adjustable wrenches can make all the difference when addressing urgent issues in low-light conditions. Additionally, keeping emergency supplies such as batteries and spare bulbs readily available can prevent small problems from escalating into significant inconveniences.
Another critical aspect of safe temporary repairs is understanding your own limitations. While many minor issues can be addressed with common household items and basic skills, complex electrical or structural problems should be left to professionals. Attempting repairs beyond one's expertise not only risks personal injury but may also exacerbate the original issue.
Furthermore, it's vital to consider any environmental hazards that might accompany nighttime repairs. For instance, if addressing a water leak near electrical outlets or appliances, ensure power sources are shut off before proceeding. This precaution reduces the risk of electric shock a danger that is amplified by darkness.
Communication also plays an essential role in maintaining safety during these situations. If possible, inform family members or housemates about ongoing repairs; this keeps them alert to potential hazards and involved in ensuring collective safety.
Lastly, adopting a mindset of preparedness extends beyond just having tools at hand; it involves regular maintenance checks around your home to identify potential weak spots before they become emergencies. Proactively addressing these issues during daytime hours will lessen the likelihood of nighttime surprises.
In summary, while temporary solutions serve as valuable stopgaps for nighttime malfunctions, prioritizing safety ensures that these quick fixes don't result in larger problems or personal harm. By preparing adequately with tools and knowledge-and knowing when professional intervention is warranted-we can navigate nighttime challenges effectively and safely.
![]() |
The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject.(September 2010)
|
![]() |
This article's lead section may be too technical for most readers to understand.(March 2021)
|
In law, a warranty is an expressed or implied promise or assurance of some kind. The term's meaning varies across legal subjects.[1] In property law, it refers to a covenant by the grantor of a deed.[2] In insurance law, it refers to a promise by the purchaser of an insurance about the thing or person to be insured.[3]
In contract law, a warranty is a contractual assurance given, typically, by a seller to a buyer,[4] for example confirming that the seller is the owner of the property being sold.[5] A warranty is a term of a contract, but not usually a condition of the contract or an innominate term, meaning that it is a term "not going to the root of the contract",[6] and therefore only entitles the innocent party to damages if it is breached,[6] i.e. if the warranty is not true or the defaulting party does not perform the contract in accordance with the terms of the warranty. A warranty is not a guarantee: it is a mere promise. It may be enforced if it is breached by an award for the legal remedy of damages.
Depending on the terms of the contract, a product warranty may cover a product such that a manufacturer provides a warranty to a consumer with whom the manufacturer has no direct contractual relationship because it is purchased via an intermediary.
A warranty may be express or implied. An express warranty is expressly stated (typically, written); whether or not a term will be implied into a contract depends on the particular contract law of the country in question. Warranties may also state that a particular fact is true at a point in time, or that the fact will continue into the future (a "continuing warranty").
Express warranties are created when the seller makes a guarantee to the buyer that the product or service being offered has certain qualities. For there to exist an express warranty, a statement regarding the product or service must be made to the buyer and the statement must play a role in the buyer's decision to purchase the product or service. If, after purchase, the buyer feels that the given statement was a misrepresentation of the actual product or service, the buyer can file for breach of express warranty.[7]
Implied warranties are unwritten promises that arise from the nature of the transaction, and the inherent understanding by the buyer, rather than from the express representations of the seller.
Warranties provided in the sale of goods (tangible products) vary according to jurisdiction, but commonly new goods are sold with implied warranty that the goods are as advertised. Used products, however, may be sold "as is" with no warranties. Each country, however, defines its own parameters with regard to implied conditions or implied warranties. The rules regarding warranties are largely standardised; i.e., the concepts of offer, acceptance, consideration, capacity to contract and intention to create legal relations. Those are the five elements to create a legally binding contract in the United States (all 50 states), England and Wales, Scotland and Northern Ireland, each of the seven states of Australia, and all other common law countries. Countries with civil law systems, however, recognise legally binding contracts which are not supported by consideration.[citation needed]
In the United States, various laws apply, including provisions in the Uniform Commercial Code which provide for implied warranties.[8] However, these implied warranties were often limited by disclaimers. In 1975 the Magnuson–Moss Warranty Act was passed to strengthen warranties on consumer goods.[9] Among other things, under the law implied warranties cannot be disclaimed if an express warranty is offered, and attorney fees may be recovered.[9] In some states, statutory warranties are required on new home construction, and "lemon laws" apply to motor vehicles.
Article 2 of the Uniform Commercial Code, which has been adopted with variations in each state, provides that the following two warranties are implied unless they are explicitly disclaimed (such as an "as is" statement):
A common kind of warranty on goods is a warranty that the product is free from material defects in materials and workmanship. This simply promises that the manufacturer properly constructed the product, out of proper materials. This implies that the product is not defective for the purposes for which it was made.
Warranties may be time limited, thus limiting the time the buyer has to make a claim for breach of warranty. For example, a typical 90-day warranty on a television gives the buyer 90 days from the date of purchase to claim that the television was improperly constructed. Should the television fail after 91 days of normal usage, which because televisions customarily last longer than 91 days means there was a defect in the materials or workmanship of the television, the buyer nonetheless may not collect on the warranty because it is too late to file a claim. Consumer protection laws implemented by statute, however, provide additional remedies as it is not usually expected that a television will last for only 90 days.
Time-limited warranties are often confused with performance warranties. A 90-day performance warranty would promise that the television would work for 90 days, which is fundamentally different from promising that it was delivered free of defects and limiting the time the buyer has to prove otherwise. But because the usual evidence that a product was delivered defective is that it later breaks, the effect is very similar.
One situation in which the effect of a time-limited warranty is different from the effect of a performance warranty is where the time limit exceeds a normal lifetime of the product. If a coat is designed to last two years, but has a 10-year limited warranty against defects in materials and workmanship, a buyer who wears the coat for 3 years and then finds it worn out would not be able to collect on the warranty. But it is different from a 2-year warranty because if the buyer starts wearing the coat 5 years after buying it, and finds it wears out a year later, the buyer would have a warranty claim in Year 6. On the other hand, a 10-year performance warranty would promise that the coat would last 10 years.
In the United States, the Magnuson–Moss Warranty Act of 1976 provides for enforcement of a satisfaction guarantee warranty. In these cases, the advertiser must refund the full purchase price regardless of the reason for dissatisfaction.[10]
A lifetime warranty is usually a warranty against defects in materials and workmanship that has no time limit to make a claim, rather than a warranty that the product will perform for the lifetime of the buyer.[11] The actual time that product can be expected to perform is normally determined by the custom for products of its kind used the way the buyer uses it.
If a product has been discontinued and is no longer available, the warranty may last a limited period longer. For example:
A warranty may be limited in duration (as above) and/or in scope. In Avrora Fine Arts v Christie, Manson and Woods (a UK High Court case), the auctioneers had issued a "limited warranty" that a certain painting sold at auction had been painted by the Russian painter Boris Kustodiev, which experts subsequently stated was not the case. The sale was cancelled and the buyer was reimbursed, but further claims of negligence and misrepresentation were denied because they fell outside the warranty's scope.[14]
Warranties are breached when the promise is not performed at all, or not performed in accordance with the contract. The seller may honor the warranty by making a refund or a replacement. The statute of limitations depends on the jurisdiction and contractual agreements. In the United States, the Uniform Commercial Code § 2-725 provides for a four-year time limit, which can be limited to one year by contract, starting from the date of delivery or if future performance is guaranteed from the date of discovery. Refusing to honor the warranty may be an unfair business practice. In the United States, breach of warranty lawsuits may be distinct from revocation of contract suits; in the case of the breach of warranty, the buyer's item is repaired or replaced while breach of contract involves returning the item to the seller.[15]
Some warranties require that repairs be undertaken by an authorized service provider. In such cases, service by non-authorized personnel or company may void (nullify) the warranty. However, according to the Magnuson-Moss Act (a U.S. Federal law that governs warranties, which was passed in 1975), if the warranty does not provide full or partial payment of labor (to repair the device or system), it is the owner's choice who will provide the labor, including the possibility of DIY ("Do It Yourself") repairs, in which case the device or system owner will pay zero dollars for labor, yet the company that provided the warranty must still provide all the parts needed for the repair at absolutely no charge to the owner.
If the defective product causes injury, this may be a cause of action for a product liability lawsuit (tort). Strict liability may be applied.
In addition to standard warranties on new items, third parties or manufacturers may sell or offer extended warranties (also called service contracts).[16] These extend the warranty for a further length of time. However, these warranties have terms and conditions which may not match the original terms and conditions. For example, these may not cover anything other than mechanical failure from normal usage. Exclusions may include commercial use, "acts of God", owner abuse, and malicious destruction. They may also exclude parts that normally wear out such as tires and lubrication on a vehicle.
These types of warranties are provided for various products, but automobiles and electronics are common examples. Warranties which are sold through retailers such as Best Buy may include significant commission for the retailer as a result of reverse competition.[17] For instance, an auto warranty from a car dealership may be subcontracted and vehicle repairs may be at a lower rate which could compromise the quality of service. At the time of repair, out-of-pocket expenses may be charged for unexpected services provided outside of the warranty terms or uncovered parts. Extended Warranties are mostly back to back underwritten by underwriters, who are the actual bearer of the risk.
Statements of fact in a contract or in obtaining the contract are considered to be either warranties or representations. Traditionally, warranties are factual promises which are enforced through a contract legal action, regardless of materiality, intent, or reliance.[18] Representations are traditionally *pre*contractual statements which allow for a tort-based action if the misrepresentation is innocent, negligent or fraudulent.[19] In U.S. law, the distinction between the two is somewhat unclear;[18] warranties are viewed as primarily contract-based legal action while negligent or fraudulent misrepresentations are tort-based, but there is a confusing mix of case law in the United States.[18] In modern English law, sellers often avoid using the term 'represents' in order to avoid claims under the Misrepresentation Act 1967 (although English law will look to the substance rather than the form of the representation to decide what it is), while in America 'warrants and represents' is relatively common.[20] Some modern commentators suggest avoiding the words and substituting 'state' or 'agree', and some model forms do not use the words;[19] however, others disagree.[21]
Written warranties on new major appliances, such as refrigerators, kitchen stoves and dishwashers, usually cover the cost of parts and labor to repair defects in materials or workmanship which appear under normal home use.
Warranties often cover defects up to a year after purchase or delivery.[22] However some exclude new owners when a house or appliance is sold within the year (Frigidaire,[23] LG,[24] Samsung[25]). Others do let warranties transfer to new buyers (Amana,[26] General Electric,[27] Whirlpool). Some manufacturers cover refrigerators' sealed parts (compressors, tubing, etc.) for five years (General Electric,[27] Samsung,[28] Whirlpool)[25] or seven years (LG[24]) or ten years (KitchenAid[29]).
Warranties on water heaters cover parts for 5 to 12 years in single family residences, one year otherwise. They do not cover new owners when a house or heater is sold; nor do they cover the original owner if the heater is moved to a second location.[30][31][32][33][34] Tank models from A. O. Smith do not allow heating elements to be replaced with lower (or higher) wattages, and do not cover renter-occupied single family. They end if the unit is flooded or ever uses desalinated or deionized water, such as municipal desalination plants or reverse osmosis filters.[32][33] Smith's tank models for manufactured housing do not provide coverage if a whirlpool or hot tub is connected.[33]
Tank water heater warranties exclude labor, liability for water damage, and shipping cost to return the old heater or parts. Tankless warranties do not exclude water damage; they cover labor for a year, and Ruud/Rheem covers return shipping on tankless models.[31][34] Smith's tankless water heaters do not restrict coverage to a single family, and require professional installation.[34]
Implied warranties under US law could extend for longer periods. However, most states allow the written warranties to include clauses which limit these implied warranties to the same time period as the written warranty.[35]
New car factory warranties commonly range from one year to five years and in some cases extend even 10 years, with typically a mileage limit as well. Car warranties can be extended by the manufacturer or other companies with a renewal fee.
Used car warranties are usually 3 months and 3,000 miles.
In the United Kingdom, types of warranties have been classified as either an:
In the United Kingdom, the Financial Conduct Authority (FCA), which began to regulate insurance contracts in this context in 2005, determined that additional warranties sold by car dealerships are "unlikely to be insurance".[36] Insurance warranties may offer greater protection to the consumer.
A home warranty protects against the costs of home and appliance repair by offering home warranty coverage for houses, townhomes, condominiums, mobile homes, and new construction homes. When a problem occurs with a covered appliance or mechanical system such as an air conditioning unit or furnace, a service technician repairs or replaces it. The homeowner may have to pay for a service call fee and the home warranty company pays the balance for the repair or replacement of the covered item.
An intellectual property right (IPR) warranty provides contractual protection against breach of rights in software development and other fields where IPR is protected. Increasing reluctance on the part of suppliers to offer an IPR warranty or indemnity has been noted in recent years.[37]
Warranty data consists of claims data and supplementary data. Claims data are the data collected during the servicing of claims under warranty and supplementary data are additional data such as production and marketing data.[38] This data can help determine product reliability and plan for future modifications.[38]
Most manufacturers offer warranties for appliances that last from three months to up to one year.
![]() Blue, green, and red LEDs in 5 mm diffused cases. There are many different variants of LEDs.
|
|
Working principle | Electroluminescence |
---|---|
Inventor |
|
First production | October 1962 |
Pin names | Anode and cathode |
Electronic symbol | |
![]() |
A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corresponding to the energy of the photons) is determined by the energy required for electrons to cross the band gap of the semiconductor.[5] White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.[6]
Appearing as practical electronic components in 1962, the earliest LEDs emitted low-intensity infrared (IR) light.[7] Infrared LEDs are used in remote-control circuits, such as those used with a wide variety of consumer electronics. The first visible-light LEDs were of low intensity and limited to red.
Early LEDs were often used as indicator lamps, replacing small incandescent bulbs, and in seven-segment displays. Later developments produced LEDs available in visible, ultraviolet (UV), and infrared wavelengths with high, low, or intermediate light output, for instance, white LEDs suitable for room and outdoor lighting. LEDs have also given rise to new types of displays and sensors, while their high switching rates are useful in advanced communications technology with applications as diverse as aviation lighting, fairy lights, strip lights, automotive headlamps, advertising, general lighting, traffic signals, camera flashes, lighted wallpaper, horticultural grow lights, and medical devices.[8]
LEDs have many advantages over incandescent light sources, including lower power consumption, a longer lifetime, improved physical robustness, smaller sizes, and faster switching. In exchange for these generally favorable attributes, disadvantages of LEDs include electrical limitations to low voltage and generally to DC (not AC) power, the inability to provide steady illumination from a pulsing DC or an AC electrical supply source, and a lesser maximum operating temperature and storage temperature.
LEDs are transducers of electricity into light. They operate in reverse of photodiodes, which convert light into electricity.
The first LED was created by Soviet inventor Oleg Losev[9] in 1927, but electroluminescence was already known for 20 years, and relied on a diode made of silicon carbide.
Commercially viable LEDs only became available after Texas Instruments engineers patented efficient near-infrared emission from a diode based on GaAs in 1962.
From 1968, commercial LEDs were extremely costly and saw no practical use. Monsanto and Hewlett-Packard led the development of LEDs to the point where, in the 1970s, a unit cost less than five cents.[10]
In a light-emitting diode, the recombination of electrons and electron holes in a semiconductor produces light (be it infrared, visible or UV), a process called "electroluminescence". The wavelength of the light depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, design features of the devices such as special optical coatings and die shape are required to efficiently emit light.[11]
Unlike a laser, the light emitted from an LED is neither spectrally coherent nor even highly monochromatic. Its spectrum is sufficiently narrow that it appears to the human eye as a pure (saturated) color.[12][13] Also unlike most lasers, its radiation is not spatially coherent, so it cannot approach the very high intensity characteristic of lasers.
External videos | |
---|---|
![]() |
|
![]() |
By selection of different semiconductor materials, single-color LEDs can be made that emit light in a narrow band of wavelengths from near-infrared through the visible spectrum and into the ultraviolet range. The required operating voltages of LEDs increase as the emitted wavelengths become shorter (higher energy, red to blue), because of their increasing semiconductor band gap.
Blue LEDs have an active region consisting of one or more InGaN quantum wells sandwiched between thicker layers of GaN, called cladding layers. By varying the relative In/Ga fraction in the InGaN quantum wells, the light emission can in theory be varied from violet to amber.
Aluminium gallium nitride (AlGaN) of varying Al/Ga fraction can be used to manufacture the cladding and quantum well layers for ultraviolet LEDs, but these devices have not yet reached the level of efficiency and technological maturity of InGaN/GaN blue/green devices. If unalloyed GaN is used in this case to form the active quantum well layers, the device emits near-ultraviolet light with a peak wavelength centred around 365 nm. Green LEDs manufactured from the InGaN/GaN system are far more efficient and brighter than green LEDs produced with non-nitride material systems, but practical devices still exhibit efficiency too low for high-brightness applications.[citation needed]
With AlGaN and AlGaInN, even shorter wavelengths are achievable. Near-UV emitters at wavelengths around 360–395 nm are already cheap and often encountered, for example, as black light lamp replacements for inspection of anti-counterfeiting UV watermarks in documents and bank notes, and for UV curing. Substantially more expensive, shorter-wavelength diodes are commercially available for wavelengths down to 240 nm.[14] As the photosensitivity of microorganisms approximately matches the absorption spectrum of DNA, with a peak at about 260 nm, UV LED emitting at 250–270 nm are expected in prospective disinfection and sterilization devices. Recent research has shown that commercially available UVA LEDs (365 nm) are already effective disinfection and sterilization devices.[15] UV-C wavelengths were obtained in laboratories using aluminium nitride (210 nm),[16] boron nitride (215 nm)[17][18] and diamond (235 nm).[19]
There are two primary ways of producing white light-emitting diodes. One is to use individual LEDs that emit three primary colors—red, green and blue—and then mix all the colors to form white light. The other is to use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light, similar to a fluorescent lamp. The yellow phosphor is cerium-doped YAG crystals suspended in the package or coated on the LED. This YAG phosphor causes white LEDs to appear yellow when off, and the space between the crystals allow some blue light to pass through in LEDs with partial phosphor conversion. Alternatively, white LEDs may use other phosphors like manganese(IV)-doped potassium fluorosilicate (PFS) or other engineered phosphors. PFS assists in red light generation, and is used in conjunction with conventional Ce:YAG phosphor.
In LEDs with PFS phosphor, some blue light passes through the phosphors, the Ce:YAG phosphor converts blue light to green and red (yellow) light, and the PFS phosphor converts blue light to red light. The color, emission spectrum or color temperature of white phosphor converted and other phosphor converted LEDs can be controlled by changing the concentration of several phosphors that form a phosphor blend used in an LED package.[20][21][22][23]
The 'whiteness' of the light produced is engineered to suit the human eye. Because of metamerism, it is possible to have quite different spectra that appear white. The appearance of objects illuminated by that light may vary as the spectrum varies. This is the issue of color rendition, quite separate from color temperature. An orange or cyan object could appear with the wrong color and much darker as the LED or phosphor does not emit the wavelength it reflects. The best color rendition LEDs use a mix of phosphors, resulting in less efficiency and better color rendering.[citation needed]
The first white light-emitting diodes (LEDs) were offered for sale in the autumn of 1996.[24] Nichia made some of the first white LEDs which were based on blue LEDs with Ce:YAG phosphor.[25] Ce:YAG is often grown using the Czochralski method.[26]
Mixing red, green, and blue sources to produce white light needs electronic circuits to control the blending of the colors. Since LEDs have slightly different emission patterns, the color balance may change depending on the angle of view, even if the RGB sources are in a single package, so RGB diodes are seldom used to produce white lighting. Nonetheless, this method has many applications because of the flexibility of mixing different colors,[27] and in principle, this mechanism also has higher quantum efficiency in producing white light.[28]
There are several types of multicolor white LEDs: di-, tri-, and tetrachromatic white LEDs. Several key factors that play among these different methods include color stability, color rendering capability, and luminous efficacy. Often, higher efficiency means lower color rendering, presenting a trade-off between the luminous efficacy and color rendering. For example, the dichromatic white LEDs have the best luminous efficacy (120 lm/W), but the lowest color rendering capability. Although tetrachromatic white LEDs have excellent color rendering capability, they often have poor luminous efficacy. Trichromatic white LEDs are in between, having both good luminous efficacy (>70 lm/W) and fair color rendering capability.[29]
One of the challenges is the development of more efficient green LEDs. The theoretical maximum for green LEDs is 683 lumens per watt but as of 2010 few green LEDs exceed even 100 lumens per watt. The blue and red LEDs approach their theoretical limits.[citation needed]
Multicolor LEDs offer a means to form light of different colors. Most perceivable colors can be formed by mixing different amounts of three primary colors. This allows precise dynamic color control. Their emission power decays exponentially with rising temperature,[30] resulting in a substantial change in color stability. Such problems inhibit industrial use. Multicolor LEDs without phosphors cannot provide good color rendering because each LED is a narrowband source. LEDs without phosphor, while a poorer solution for general lighting, are the best solution for displays, either backlight of LCD, or direct LED based pixels.
Dimming a multicolor LED source to match the characteristics of incandescent lamps is difficult because manufacturing variations, age, and temperature change the actual color value output. To emulate the appearance of dimming incandescent lamps may require a feedback system with color sensor to actively monitor and control the color.[31]
This method involves coating LEDs of one color (mostly blue LEDs made of InGaN) with phosphors of different colors to form white light; the resultant LEDs are called phosphor-based or phosphor-converted white LEDs (pcLEDs).[32] A fraction of the blue light undergoes the Stokes shift, which transforms it from shorter wavelengths to longer. Depending on the original LED's color, various color phosphors are used. Using several phosphor layers of distinct colors broadens the emitted spectrum, effectively raising the color rendering index (CRI).[33]
Phosphor-based LEDs have efficiency losses due to heat loss from the Stokes shift and also other phosphor-related issues. Their luminous efficacies compared to normal LEDs depend on the spectral distribution of the resultant light output and the original wavelength of the LED itself. For example, the luminous efficacy of a typical YAG yellow phosphor based white LED ranges from 3 to 5 times the luminous efficacy of the original blue LED because of the human eye's greater sensitivity to yellow than to blue (as modeled in the luminosity function).
Due to the simplicity of manufacturing, the phosphor method is still the most popular method for making high-intensity white LEDs. The design and production of a light source or light fixture using a monochrome emitter with phosphor conversion is simpler and cheaper than a complex RGB system, and the majority of high-intensity white LEDs presently on the market are manufactured using phosphor light conversion.[citation needed]
Among the challenges being faced to improve the efficiency of LED-based white light sources is the development of more efficient phosphors. As of 2010, the most efficient yellow phosphor is still the YAG phosphor, with less than 10% Stokes shift loss. Losses attributable to internal optical losses due to re-absorption in the LED chip and in the LED packaging itself account typically for another 10% to 30% of efficiency loss. Currently, in the area of phosphor LED development, much effort is being spent on optimizing these devices to higher light output and higher operation temperatures. For instance, the efficiency can be raised by adapting better package design or by using a more suitable type of phosphor. Conformal coating process is frequently used to address the issue of varying phosphor thickness.[citation needed]
Some phosphor-based white LEDs encapsulate InGaN blue LEDs inside phosphor-coated epoxy. Alternatively, the LED might be paired with a remote phosphor, a preformed polycarbonate piece coated with the phosphor material. Remote phosphors provide more diffuse light, which is desirable for many applications. Remote phosphor designs are also more tolerant of variations in the LED emissions spectrum. A common yellow phosphor material is cerium-doped yttrium aluminium garnet (Ce3+:YAG).[citation needed]
White LEDs can also be made by coating near-ultraviolet (NUV) LEDs with a mixture of high-efficiency europium-based phosphors that emit red and blue, plus copper and aluminium-doped zinc sulfide (ZnS:Cu, Al) that emits green. This is a method analogous to the way fluorescent lamps work. This method is less efficient than blue LEDs with YAG:Ce phosphor, as the Stokes shift is larger, so more energy is converted to heat, but yields light with better spectral characteristics, which render color better. Due to the higher radiative output of the ultraviolet LEDs than of the blue ones, both methods offer comparable brightness. A concern is that UV light may leak from a malfunctioning light source and cause harm to human eyes or skin.[citation needed]
A new style of wafers composed of gallium-nitride-on-silicon (GaN-on-Si) is being used to produce white LEDs using 200-mm silicon wafers. This avoids the typical costly sapphire substrate in relatively small 100- or 150-mm wafer sizes.[34] The sapphire apparatus must be coupled with a mirror-like collector to reflect light that would otherwise be wasted. It was predicted that since 2020, 40% of all GaN LEDs are made with GaN-on-Si. Manufacturing large sapphire material is difficult, while large silicon material is cheaper and more abundant. LED companies shifting from using sapphire to silicon should be a minimal investment.[35]
There are RGBW LEDs that combine RGB units with a phosphor white LED on the market. Doing so retains the extremely tunable color of RGB LED, but allows color rendering and efficiency to be optimized when a color close to white is selected.[36]
Some phosphor white LED units are "tunable white", blending two extremes of color temperatures (commonly 2700K and 6500K) to produce intermediate values. This feature allows users to change the lighting to suit the current use of a multifunction room.[37] As illustrated by a straight line on the chromaticity diagram, simple two-white blends will have a pink bias, becoming most severe in the middle. A small amount of green light, provided by another LED, could correct the problem.[38] Some products are RGBWW, i.e. RGBW with tunable white.[39]
A final class of white LED with mixed light is dim-to-warm. These are ordinary 2700K white LED bulbs with a small red LED that turns on when the bulb is dimmed. Doing so makes the color warmer, emulating an incandescent light bulb.[39]
Another method used to produce experimental white light LEDs used no phosphors at all and was based on homoepitaxially grown zinc selenide (ZnSe) on a ZnSe substrate that simultaneously emitted blue light from its active region and yellow light from the substrate.[40]
In an organic light-emitting diode (OLED), the electroluminescent material composing the emissive layer of the diode is an organic compound. The organic material is electrically conductive due to the delocalization of pi electrons caused by conjugation over all or part of the molecule, and the material therefore functions as an organic semiconductor.[41] The organic materials can be small organic molecules in a crystalline phase, or polymers.[42]
The potential advantages of OLEDs include thin, low-cost displays with a low driving voltage, wide viewing angle, and high contrast and color gamut.[43] Polymer LEDs have the added benefit of printable and flexible displays.[44][45][46] OLEDs have been used to make visual displays for portable electronic devices such as cellphones, digital cameras, lighting and televisions.[42][43]
LEDs are made in different packages for different applications. A single or a few LED junctions may be packed in one miniature device for use as an indicator or pilot lamp. An LED array may include controlling circuits within the same package, which may range from a simple resistor, blinking or color changing control, or an addressable controller for RGB devices. Higher-powered white-emitting devices will be mounted on heat sinks and will be used for illumination. Alphanumeric displays in dot matrix or bar formats are widely available. Special packages permit connection of LEDs to optical fibers for high-speed data communication links.
These are mostly single-die LEDs used as indicators, and they come in various sizes from 1.8 mm to 10 mm, through-hole and surface mount packages.[47] Typical current ratings range from around 1 mA to above 20 mA. LED's can be soldered to a flexible PCB strip to form LED tape popularly used for decoration.
Common package shapes include round, with a domed or flat top, rectangular with a flat top (as used in bar-graph displays), and triangular or square with a flat top. The encapsulation may also be clear or tinted to improve contrast and viewing angle. Infrared devices may have a black tint to block visible light while passing infrared radiation, such as the Osram SFH 4546.[48]
5 V and 12 V LEDs are ordinary miniature LEDs that have a series resistor for direct connection to a 5 V or 12 V supply.[49]
High-power LEDs (HP-LEDs) or high-output LEDs (HO-LEDs) can be driven at currents from hundreds of mA to more than an ampere, compared with the tens of mA for other LEDs. Some can emit over a thousand lumens.[50][51] LED power densities up to 300 W/cm2 have been achieved. Since overheating is destructive, the HP-LEDs must be mounted on a heat sink to allow for heat dissipation. If the heat from an HP-LED is not removed, the device fails in seconds. One HP-LED can often replace an incandescent bulb in a flashlight, or be set in an array to form a powerful LED lamp.
Some HP-LEDs in this category are the Nichia 19 series, Lumileds Rebel Led, Osram Opto Semiconductors Golden Dragon, and Cree X-lamp. As of September 2009, some HP-LEDs manufactured by Cree exceed 105 lm/W.[52]
Examples for Haitz's law—which predicts an exponential rise in light output and efficacy of LEDs over time—are the CREE XP-G series LED, which achieved 105 lm/W in 2009[52] and the Nichia 19 series with a typical efficacy of 140 lm/W, released in 2010.[53]
LEDs developed by Seoul Semiconductor can operate on AC power without a DC converter. For each half-cycle, part of the LED emits light and part is dark, and this is reversed during the next half-cycle. The efficiency of this type of HP-LED is typically 40 lm/W.[54] A large number of LED elements in series may be able to operate directly from line voltage. In 2009, Seoul Semiconductor released a high DC voltage LED, named 'Acrich MJT', capable of being driven from AC power with a simple controlling circuit. The low-power dissipation of these LEDs affords them more flexibility than the original AC LED design.[55]
An LED strip, tape, or ribbon light is a flexible circuit board populated by surface-mount light-emitting diodes (SMD LEDs) and other components that usually comes with an adhesive backing. Traditionally, strip lights had been used solely in accent lighting, backlighting, task lighting, and decorative lighting applications, such as cove lighting.
LED strip lights originated in the early 2000s. Since then, increased luminous efficacy and higher-power SMDs have allowed them to be used in applications such as high brightness task lighting, fluorescent and halogen lighting fixture replacements, indirect lighting applications, ultraviolet inspection during manufacturing processes, set and costume design, and growing plants.
![]() |
This section needs additional citations for verification.(October 2020)
|
The current in an LED or other diodes rises exponentially with the applied voltage (see Shockley diode equation), so a small change in voltage can cause a large change in current. Current through the LED must be regulated by an external circuit such as a constant current source to prevent damage. Since most common power supplies are (nearly) constant-voltage sources, LED fixtures must include a power converter, or at least a current-limiting resistor. In some applications, the internal resistance of small batteries is sufficient to keep current within the LED rating.[citation needed]
LEDs are sensitive to voltage. They must be supplied with a voltage above their threshold voltage and a current below their rating. Current and lifetime change greatly with a small change in applied voltage. They thus require a current-regulated supply (usually just a series resistor for indicator LEDs).[65]
Efficiency droop: The efficiency of LEDs decreases as the electric current increases. Heating also increases with higher currents, which compromises LED lifetime. These effects put practical limits on the current through an LED in high power applications.[66]
Unlike a traditional incandescent lamp, an LED will light only when voltage is applied in the forward direction of the diode. No current flows and no light is emitted if voltage is applied in the reverse direction. If the reverse voltage exceeds the breakdown voltage, which is typically about five volts, a large current flows and the LED will be damaged. If the reverse current is sufficiently limited to avoid damage, the reverse-conducting LED is a useful noise diode.[citation needed]
By definition, the energy band gap of any diode is higher when reverse-biased than when forward-biased. Because the band gap energy determines the wavelength of the light emitted, the color cannot be the same when reverse-biased. The reverse breakdown voltage is sufficiently high that the emitted wavelength cannot be similar enough to still be visible. Though dual-LED packages exist that contain a different color LED in each direction, it is not expected that any single LED element can emit visible light when reverse-biased.[citation needed]
It is not known if any zener diode could exist that emits light only in reverse-bias mode. Uniquely, this type of LED would conduct when connected backwards.
LED manufacturing involves multiple steps, including epitaxy, chip processing, chip separation, and packaging.[76]
In a typical LED manufacturing process, encapsulation is performed after probing, dicing, die transfer from wafer to package, and wire bonding or flip chip mounting,[77] perhaps using indium tin oxide, a transparent electrical conductor. In this case, the bond wire(s) are attached to the ITO film that has been deposited in the LEDs.
Flip chip circuit on board (COB) is a technique that can be used to manufacture LEDs.[78]
Conventional LEDs are made from a variety of inorganic semiconductor materials. The following table shows the available colors with wavelength range, voltage drop and material:
Color | Wavelength (nm) | Voltage (V) | Semiconductor material | |
---|---|---|---|---|
Infrared | λ > 760 | ΔV < 1.9 | Gallium arsenide (GaAs)
Aluminium gallium arsenide (AlGaAs) |
|
Red | 610 < λ < 760 | 1.63 < ΔV < 2.03 | Aluminium gallium arsenide (AlGaAs)
Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP) |
|
Orange | 590 < λ < 610 | 2.03 < ΔV < 2.10 | Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP) |
|
Yellow | 570 < λ < 590 | 2.10 < ΔV < 2.18 | Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP) |
|
Green | 500 < λ < 570 | 1.9[79] < ΔV < 4.0 | Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
Gallium(III) phosphide (GaP) Aluminium gallium indium phosphide (AlGaInP) Aluminium gallium phosphide (AlGaP) |
|
Blue | 450 < λ < 500 | 2.48 < ΔV < 3.7 | Zinc selenide (ZnSe)
Indium gallium nitride (InGaN) Silicon carbide (SiC) as substrate Silicon (Si) as substrate — (under development) |
|
Violet | 400 < λ < 450 | 2.76 < ΔV < 4.0 | Indium gallium nitride (InGaN) | |
Purple | multiple types | 2.48 < ΔV < 3.7 | Dual blue/red LEDs,
blue with red phosphor, or white with purple plastic |
|
Ultraviolet | λ < 400 | 3.1 < ΔV < 4.4 | Diamond (235 nm)[80]
Boron nitride (215 nm)[81][82] Aluminium nitride (AlN) (210 nm)[16] Aluminium gallium nitride (AlGaN) Aluminium gallium indium nitride (AlGaInN) — (down to 210 nm)[83] |
|
White | Broad spectrum | 2.7 < ΔV < 3.5 | Blue diode with yellow phosphor or violet/UV diode with multi-color phosphor |
LED uses fall into five major categories:
The application of LEDs in horticulture has revolutionized plant cultivation by providing energy-efficient, customizable lighting solutions that optimize plant growth and development.[90] LEDs offer precise control over light spectra, intensity, and photoperiods, enabling growers to tailor lighting conditions to the specific needs of different plant species and growth stages. This technology enhances photosynthesis, improves crop yields, and reduces energy costs compared to traditional lighting systems. Additionally, LEDs generate less heat, allowing closer placement to plants without risking thermal damage, and contribute to sustainable farming practices by lowering carbon footprints and extending growing seasons in controlled environments.[91] Light spectrum affects growth, metabolite profile, and resistance against fungal phytopathogens of Solanum lycopersicum seedlings.[92] LEDs can also be used in micropropagation.[93]
![]() |
This section does not cite any sources.(October 2020)
|
The low energy consumption, low maintenance and small size of LEDs has led to uses as status indicators and displays on a variety of equipment and installations. Large-area LED displays are used as stadium displays, dynamic decorative displays, and dynamic message signs on freeways. Thin, lightweight message displays are used at airports and railway stations, and as destination displays for trains, buses, trams, and ferries.
One-color light is well suited for traffic lights and signals, exit signs, emergency vehicle lighting, ships' navigation lights, and LED-based Christmas lights
Because of their long life, fast switching times, and visibility in broad daylight due to their high output and focus, LEDs have been used in automotive brake lights and turn signals. The use in brakes improves safety, due to a great reduction in the time needed to light fully, or faster rise time, about 0.1 second faster[citation needed] than an incandescent bulb. This gives drivers behind more time to react. In a dual intensity circuit (rear markers and brakes) if the LEDs are not pulsed at a fast enough frequency, they can create a phantom array, where ghost images of the LED appear if the eyes quickly scan across the array. White LED headlamps are beginning to appear. Using LEDs has styling advantages because LEDs can form much thinner lights than incandescent lamps with parabolic reflectors.
Due to the relative cheapness of low output LEDs, they are also used in many temporary uses such as glowsticks and throwies. Artists have also used LEDs for LED art.
With the development of high-efficiency and high-power LEDs, it has become possible to use LEDs in lighting and illumination. To encourage the shift to LED lamps and other high-efficiency lighting, in 2008 the US Department of Energy created the L Prize competition. The Philips Lighting North America LED bulb won the first competition on August 3, 2011, after successfully completing 18 months of intensive field, lab, and product testing.[94]
Efficient lighting is needed for sustainable architecture. As of 2011, some LED bulbs provide up to 150 lm/W and even inexpensive low-end models typically exceed 50 lm/W, so that a 6-watt LED could achieve the same results as a standard 40-watt incandescent bulb. The lower heat output of LEDs also reduces demand on air conditioning systems. Worldwide, LEDs are rapidly adopted to displace less effective sources such as incandescent lamps and CFLs and reduce electrical energy consumption and its associated emissions. Solar powered LEDs are used as street lights and in architectural lighting.
The mechanical robustness and long lifetime are used in automotive lighting on cars, motorcycles, and bicycle lights. LED street lights are employed on poles and in parking garages. In 2007, the Italian village of Torraca was the first place to convert its street lighting to LEDs.[95]
Cabin lighting on recent[when?] Airbus and Boeing jetliners uses LED lighting. LEDs are also being used in airport and heliport lighting. LED airport fixtures currently include medium-intensity runway lights, runway centerline lights, taxiway centerline and edge lights, guidance signs, and obstruction lighting.
LEDs are also used as a light source for DLP projectors, and to backlight newer LCD television (referred to as LED TV), computer monitor (including laptop) and handheld device LCDs, succeeding older CCFL-backlit LCDs although being superseded by OLED screens. RGB LEDs raise the color gamut by as much as 45%. Screens for TV and computer displays can be made thinner using LEDs for backlighting.[96]
LEDs are small, durable and need little power, so they are used in handheld devices such as flashlights. LED strobe lights or camera flashes operate at a safe, low voltage, instead of the 250+ volts commonly found in xenon flashlamp-based lighting. This is especially useful in cameras on mobile phones, where space is at a premium and bulky voltage-raising circuitry is undesirable.
LEDs are used for infrared illumination in night vision uses including security cameras. A ring of LEDs around a video camera, aimed forward into a retroreflective background, allows chroma keying in video productions.
LEDs are used in mining operations, as cap lamps to provide light for miners. Research has been done to improve LEDs for mining, to reduce glare and to increase illumination, reducing risk of injury to the miners.[97]
LEDs are increasingly finding uses in medical and educational applications, for example as mood enhancement.[98] NASA has even sponsored research for the use of LEDs to promote health for astronauts.[99]
Light can be used to transmit data and analog signals. For example, lighting white LEDs can be used in systems assisting people to navigate in closed spaces while searching necessary rooms or objects.[100]
Assistive listening devices in many theaters and similar spaces use arrays of infrared LEDs to send sound to listeners' receivers. Light-emitting diodes (as well as semiconductor lasers) are used to send data over many types of fiber optic cable, from digital audio over TOSLINK cables to the very high bandwidth fiber links that form the Internet backbone. For some time, computers were commonly equipped with IrDA interfaces, which allowed them to send and receive data to nearby machines via infrared.
Because LEDs can cycle on and off millions of times per second, very high data bandwidth can be achieved.[101] For that reason, visible light communication (VLC) has been proposed as an alternative to the increasingly competitive radio bandwidth.[102] VLC operates in the visible part of the electromagnetic spectrum, so data can be transmitted without occupying the frequencies of radio communications.
Machine vision systems often require bright and homogeneous illumination, so features of interest are easier to process. LEDs are often used.
Barcode scanners are the most common example of machine vision applications, and many of those scanners use red LEDs instead of lasers. Optical computer mice use LEDs as a light source for the miniature camera within the mouse.
LEDs are useful for machine vision because they provide a compact, reliable source of light. LED lamps can be turned on and off to suit the needs of the vision system, and the shape of the beam produced can be tailored to match the system's requirements.
The discovery of radiative recombination in aluminum gallium nitride (AlGaN) alloys by U.S. Army Research Laboratory (ARL) led to the conceptualization of UV light-emitting diodes (LEDs) to be incorporated in light-induced fluorescence sensors used for biological agent detection.[103][104][105] In 2004, the Edgewood Chemical Biological Center (ECBC) initiated the effort to create a biological detector named TAC-BIO. The program capitalized on semiconductor UV optical sources (SUVOS) developed by the Defense Advanced Research Projects Agency (DARPA).[105]
UV-induced fluorescence is one of the most robust techniques used for rapid real-time detection of biological aerosols.[105] The first UV sensors were lasers lacking in-field-use practicality. In order to address this, DARPA incorporated SUVOS technology to create a low-cost, small, lightweight, low-power device. The TAC-BIO detector's response time was one minute from when it sensed a biological agent. It was also demonstrated that the detector could be operated unattended indoors and outdoors for weeks at a time.[105]
Aerosolized biological particles fluoresce and scatter light under a UV light beam. Observed fluorescence is dependent on the applied wavelength and the biochemical fluorophores within the biological agent. UV induced fluorescence offers a rapid, accurate, efficient and logistically practical way for biological agent detection. This is because the use of UV fluorescence is reagentless, or a process that does not require an added chemical to produce a reaction, with no consumables, or produces no chemical byproducts.[105]
Additionally, TAC-BIO can reliably discriminate between threat and non-threat aerosols. It was claimed to be sensitive enough to detect low concentrations, but not so sensitive that it would cause false positives. The particle-counting algorithm used in the device converted raw data into information by counting the photon pulses per unit of time from the fluorescence and scattering detectors, and comparing the value to a set threshold.[106]
The original TAC-BIO was introduced in 2010, while the second-generation TAC-BIO GEN II, was designed in 2015 to be more cost-efficient, as plastic parts were used. Its small, light-weight design allows it to be mounted to vehicles, robots, and unmanned aerial vehicles. The second-generation device could also be utilized as an environmental detector to monitor air quality in hospitals, airplanes, or even in households to detect fungus and mold.[107][108]
The light from LEDs can be modulated very quickly so they are used extensively in optical fiber and free space optics communications. This includes remote controls, such as for television sets, where infrared LEDs are often used. Opto-isolators use an LED combined with a photodiode or phototransistor to provide a signal path with electrical isolation between two circuits. This is especially useful in medical equipment where the signals from a low-voltage sensor circuit (usually battery-powered) in contact with a living organism must be electrically isolated from any possible electrical failure in a recording or monitoring device operating at potentially dangerous voltages. An optoisolator also lets information be transferred between circuits that do not share a common ground potential.
Many sensor systems rely on light as the signal source. LEDs are often ideal as a light source due to the requirements of the sensors. The Nintendo Wii's sensor bar uses infrared LEDs. Pulse oximeters use them for measuring oxygen saturation. Some flatbed scanners use arrays of RGB LEDs rather than the typical cold-cathode fluorescent lamp as the light source. Having independent control of three illuminated colors allows the scanner to calibrate itself for more accurate color balance, and there is no need for warm-up. Further, its sensors only need be monochromatic, since at any one time the page being scanned is only lit by one color of light.
Since LEDs can also be used as photodiodes, they can be used for both photo emission and detection. This could be used, for example, in a touchscreen that registers reflected light from a finger or stylus.[109] Many materials and biological systems are sensitive to, or dependent on, light. Grow lights use LEDs to increase photosynthesis in plants,[110] and bacteria and viruses can be removed from water and other substances using UV LEDs for sterilization.[15] LEDs of certain wavelengths have also been used for light therapy treatment of neonatal jaundice and acne.[111]
UV LEDs, with spectra range of 220 nm to 395 nm, have other applications, such as water/air purification, surface disinfection, glue curing, free-space non-line-of-sight communication, high performance liquid chromatography, UV curing dye printing, phototherapy (295nm Vitamin D, 308nm Excimer lamp or laser replacement), medical/ analytical instrumentation, and DNA absorption.[104][112]
LEDs have also been used as a medium-quality voltage reference in electronic circuits. The forward voltage drop (about 1.7 V for a red LED or 1.2V for an infrared) can be used instead of a Zener diode in low-voltage regulators. Red LEDs have the flattest I/V curve above the knee. Nitride-based LEDs have a fairly steep I/V curve and are useless for this purpose. Although LED forward voltage is far more current-dependent than a Zener diode, Zener diodes with breakdown voltages below 3 V are not widely available.
The progressive miniaturization of low-voltage lighting technology, such as LEDs and OLEDs, suitable to incorporate into low-thickness materials has fostered experimentation in combining light sources and wall covering surfaces for interior walls in the form of LED wallpaper.
LEDs require optimized efficiency to hinge on ongoing improvements such as phosphor materials and quantum dots.[113]
The process of down-conversion (the method by which materials convert more-energetic photons to different, less energetic colors) also needs improvement. For example, the red phosphors that are used today are thermally sensitive and need to be improved in that aspect so that they do not color shift and experience efficiency drop-off with temperature. Red phosphors could also benefit from a narrower spectral width to emit more lumens and becoming more efficient at converting photons.[114]
In addition, work remains to be done in the realms of current efficiency droop, color shift, system reliability, light distribution, dimming, thermal management, and power supply performance.[113]
Early suspicions were that the LED droop was caused by elevated temperatures. Scientists showed that temperature was not the root cause of efficiency droop.[115] The mechanism causing efficiency droop was identified in 2007 as Auger recombination, which was taken with mixed reaction.[66] A 2013 study conclusively identified Auger recombination as the cause.[116]
A new family of LEDs are based on the semiconductors called perovskites. In 2018, less than four years after their discovery, the ability of perovskite LEDs (PLEDs) to produce light from electrons already rivaled those of the best performing OLEDs.[117] They have a potential for cost-effectiveness as they can be processed from solution, a low-cost and low-tech method, which might allow perovskite-based devices that have large areas to be made with extremely low cost. Their efficiency is superior by eliminating non-radiative losses, in other words, elimination of recombination pathways that do not produce photons; or by solving outcoupling problem (prevalent for thin-film LEDs) or balancing charge carrier injection to increase the EQE (external quantum efficiency). The most up-to-date PLED devices have broken the performance barrier by shooting the EQE above 20%.[118]
In 2018, Cao et al. and Lin et al. independently published two papers on developing perovskite LEDs with EQE greater than 20%, which made these two papers a mile-stone in PLED development. Their device have similar planar structure, i.e. the active layer (perovskite) is sandwiched between two electrodes. To achieve a high EQE, they not only reduced non-radiative recombination, but also utilized their own, subtly different methods to improve the EQE.[118]
In the work of Cao et al.,[119] researchers targeted the outcoupling problem, which is that the optical physics of thin-film LEDs causes the majority of light generated by the semiconductor to be trapped in the device.[120] To achieve this goal, they demonstrated that solution-processed perovskites can spontaneously form submicrometre-scale crystal platelets, which can efficiently extract light from the device. These perovskites are formed via the introduction of amino acid additives into the perovskite precursor solutions. In addition, their method is able to passivate perovskite surface defects and reduce nonradiative recombination. Therefore, by improving the light outcoupling and reducing nonradiative losses, Cao and his colleagues successfully achieved PLED with EQE up to 20.7%.[119]
Lin and his colleague used a different approach to generate high EQE. Instead of modifying the microstructure of perovskite layer, they chose to adopt a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. In other words, they still used flat emissive layer, but tried to optimize the balance of electrons and holes injected into the perovskite, so as to make the most efficient use of the charge carriers. Moreover, in the perovskite layer, the crystals are perfectly enclosed by MABr additive (where MA is CH3NH3). The MABr shell passivates the nonradiative defects that would otherwise be present perovskite crystals, resulting in reduction of the nonradiative recombination. Therefore, by balancing charge injection and decreasing nonradiative losses, Lin and his colleagues developed PLED with EQE up to 20.3%.[121]
Certain blue LEDs and cool-white LEDs can exceed safe limits of the so-called blue-light hazard as defined in eye safety specifications such as "ANSI/IESNA RP-27.1–05: Recommended Practice for Photobiological Safety for Lamp and Lamp Systems".[122] One study showed no evidence of a risk in normal use at domestic illuminance,[123] and that caution is only needed for particular occupational situations or for specific populations.[124] In 2006, the International Electrotechnical Commission published IEC 62471 Photobiological safety of lamps and lamp systems, replacing the application of early laser-oriented standards for classification of LED sources.[125]
While LEDs have the advantage over fluorescent lamps, in that they do not contain mercury, they may contain other hazardous metals such as lead and arsenic.[126]
In 2016 the American Medical Association (AMA) issued a statement concerning the possible adverse influence of blueish street lighting on the sleep-wake cycle of city-dwellers. Critics in the industry claim exposure levels are not high enough to have a noticeable effect.[127]
cite book
: |journal=
ignored (help)cite journal
: Cite journal requires |journal=
(help)cite journal
: Cite journal requires |journal=
(help)
I called the office just by chance to see if there was an available opening for a service call to repair a busted spring. Unfortunately I didn’t catch the name of the person who answere, but she couldn’t have been more pleasant and polite. She was able to get a tech to my house in an hour. I believe the tech’s name was Mike and he too was amazing. He quickly resolved my issue and even corrected a couple of things that he saw that weren’t quite right. I would recommend to anyone and will definitely call on Middleton for any future needs. Thank you all for your great service.
Scheduling was easy, job was done quickly. Little disappointed that they gave me a quote over email (which they confirmed was for labor and materials), but when they finished it was just over $30 more. Not a huge deal, but when I asked why, I was told they gave me an approx cost and it depends on what is needed. I get that in general, however, they installed the door and I gave them my address and pics of the existing prior to getting a quote. I feel like they could have been more upfront with pricing. And just a heads up, it was pricey... Had them change the weather stripping, from ringing my doorbell to pulling out my driveway when done was literally 20 mins, cost was just over $260 😬
Had a really great experience with Middleton Overhead Doors. My door started to bow and after several attempts on me fixing it I just couldn’t get it. I didn’t want to pay on something I knew I could fix. Well, I gave up and they came out and made it look easy. I know what they are doing not to mention they called me before hand to confirm my appointment and they showed up at there scheduled appointment. I highly recommend Middleton Overhead Doors on any work that needs to be done
Received a notice the morning of telling me when to expect the men to come and put the door in. he was on time, answered all my questions, worked diligently in the cold. And did an absolutely awesome job. Everything was cleaned up, hauled away from the old door. I am extremely happy with the service I received from the first phone call I made through having the door put in. My wife and I are very, very happy with the door.